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We study how heterogeneous degree distributions and large-scale collective cooperation in social networks
emerge in complex homogeneous systems by a simple local rule: learning from the best in both strategy
selections and linking choices. The prisoner’s dilemma game is used as the local dynamics. We show that the
social structure may evolve into single-scale, broad-scale, and scale-free �SF� degree distributions for different
control parameters. In particular, in a relatively strong-selfish parameter region the SF property can be self-
organized in social networks by dynamic evolutions and these SF structures help the whole node community
to reach a high level of cooperation under the poor condition of a high selfish intention of individuals.
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Scale-free �SF� network structures, which have been ob-
served widely in social systems, have attracted great interest
in the past few years �1,2�. So far, SF networks have been
theoretically constructed only in various growing and attach-
ment models �2–5� under a few artificial linking rules. Up to
date, an important problem has not yet been touched: how
these interesting social structures can be developed from
node dynamics based on some basic abilities and instincts of
social members. For instance, learning from the best �LFB�
is one of the primary abilities of social individuals �6�. For
each individual, learning is based on limited information
among few familiar neighbors. Moreover, a basic character-
istic of a social member is selfishness, because the short-term
anticipation of selfishness can achieve high benefits; e.g., this
is the case in the simple two-player games of the prisoner’s
dilemma �PD� �6–11�. Recently, some works have revealed
that certain hub structures and degree heterogeneities, in-
cluding broad-scale degree distributions, can emerge from
homogeneous PD networks through coevolution of strategies
and structures �12–15�. It remains interesting to ask whether
the SF structures may emerge from the local PD and LFB
interactions and how these complex structures can influence
the global collective social cooperations if the answer to the
first question is yes.

In this paper, we consider social networks with fixed local
links and adjustable long-range links �LRLs� which are as-
sumed to be practical in realistic social systems. Nodes in the
network play PD games with other nodes in connections,
following the rule of LFB to adjust their strategies and LRLs.
A significant phenomenon observed is that social structures
with single-scale, broad-scale, and SF distributions can be
constructed in the same topological model for different con-
trol parameters. The most interesting result is that in a rela-
tively strong-selfish parameter region SF social structures
can be self-organized from the “first social principles”—i.e.,
from the basic individual abilities of local PD and LFB dy-
namics. We show that SF structures can be constructed
through dynamic coevolution rather than through network

growing. Moreover, these SF structures have the function of
helping society to reach high level of cooperation under the
hard condition of a strong local selfish intention of social
members.

Specifically, the network has the following characteristics.
�i� Local and long-range link networks �LLN�. All nodes,

representing individuals in the game, are distributed in a
two-dimensional �2D� lattice. All individuals have nearest-
neighbor interactions shown in Fig. 1 by n local lines without
arrows �n=4, 3, and 2 for internal, edge, and corner nodes,
respectively�. These local interactions are determined by the
spatial neighborhood, and they are reasonably assumed to be
fixed during the whole process of the game. On the other
hand, all individuals have limited capacities to establish
LRLs. For simplicity, we assume that each node can actively
take a single LRL. All LRLs are directed by arrows. For a
given node �e.g., node A in Fig. 1� a link is called active if
the arrow of the LRL is from A while passive if the arrow is
toward A. A node having an active LRL aiming at itself or at
one of its local neighbors is prohibited. It is obvious that
each node must have one active link and the number of pas-
sive links can vary.

�ii� Dynamic PD game. The dynamics of nodes is gov-
erned by the two-player PD game. In its standard form, each
player may choose either to cooperate, C, or to defect, D, in
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FIG. 1. Schematic structure of a LLN system. Each node con-
nects with n local neighbor nodes in 2D network with fixed links
and has one long-range active link to a node randomly chosen �ar-
row from a given node to a target node�. For example, link AB is an
active link of node A and a passive link of node B. And in the figure
node B has one long-range active link, three passive links, and four
fixed local links.
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any one encounter. If both players choose C, both get a pay-
off of R; if one defects while the other cooperates, D gets T,
while C gets S; if both defect, both get P, where T�R� P
�S �7,16�. Here we adopt the values R=1, T=b�1, S= P
=0 �9,17,18�. Parameter b characterizes the temptation to
defection against cooperation—i.e., the relative selfish inten-
tion of individuals. Each node plays the classical PD games
with all nodes connected. The total payoff of an individual is
the sum of the payoffs obtained in his two-player games with
all other connected nodes:

PA = �
i=1

N

PAi�Ai. �1�

�Ai=1 when A has an interaction with i, else 0.
�iii� Learning from the best. Individuals are capable of

adjusting their strategies and rewiring their active LRLs ac-
cording to their reachable information in the previous round
of the game. Here we use a simple law of adjustments: learn-
ing from the best. Each individual �say, node A� compares
the payoff of himself with those of all his connected neigh-
bors in the previous round and finds out the individual with
the best payoff �or choose one with equal probabilities if
there are multiple best neighbors�. If node A has the largest
payoff, A keeps its own previous strategy and LRL; other-
wise, A learns from the best neighbor �say, node B� by si-
multaneously taking the same strategy of the best one and
rewiring its active LRL to that of B �if the new LRL does not
achieve more profit, keeps the old link� with probability

W�A → B� = 1/�1 + e−��PB−PA�� , �2�

where PA and PB denote the total payoffs of individuals A
and B, respectively, and � characterizes the noise effects
�19�. Therefore, we consider the dynamic coevolution of
both game strategies and linking structure of individuals.

We first study the evolution behavior of cooperation of
our system. For comparison we also consider some other
networks with fixed linking structures. In Fig. 2�a� we plot
the average functions of cooperators, pC, for the stationary
solutions of some network systems, where ALLN represents
our networks with fixed local and adjustable LRLs; FLLN
denotes networks with fixed local and fixed LRLs; FLN

shows networks with fixed local links only. The same LFB
law is applied in all these three kinds of systems for the
strategy evolutions. It is observed that in a large range of b
the cooperation level in the ALLN system is much higher
than those of other systems with fixed network structures. In
order to compare the actual dynamic evolution of strategies,
we plot, in Fig. 2�b�, pC’s against time t for different systems
for relatively large b which favors defectors. In all systems
of fixed networks, pC’s decrease monotonously to zero. pC in
our ALLN system decreases also for small t, in a manner
similar to other systems �pC�min��0.007�. However, it is
surprising to observe that after a certain time, pC starts to
increase as time and finally saturates to a rather high level in
an asymptotic stationary state. This interesting feature is due
to the self-organization of long-range connections by LFB as
we will explain later.

Now we go further to study the evolution of network
structure of the ALLN system. In Figs. 3�a�–3�c� we plot the
cumulative degree distributions of passive LRLs of nodes,
P�k�, for different b values with k being the number of pas-
sive links of a given node. We find essentially different scal-
ing features of P�k� distributions. In �a� for small b the prob-
ability has an exponential �single-scale� distribution,
showing certain random connections between the nodes. In
�b�, P�k� shows a power law P�k��k−� for small k and an
exponential decay tail for relatively large k—i.e., broad-scale
distribution. The most interesting feature is observed in Fig.
3�c� where SF distribution P�k��k−�, ��1, is observed
practically for the whole range of k. We find SF networks
realized as attracting structures of coevolution of node dy-
namics, and this is essentially different from all previously
known SF networks constructed by various preferential at-
tachment rules. The cumulative degree distribution P�k�
changes continuously from single scale to broad scale to SF
scalings by increasing b and finally to states with full defec-
tors, and no critical transitions between these stages are ob-
served. Roughly speaking, one may observe single-scale
scaling for 1�b�1.9 broad-scale scaling for 1.9�b�2.5
and SF for 2.5�b�3.0. For b�3.0 all nodes are conquered
by defectors �note it is still possible that nonzero pC can be
observed in the range b�3.0 for some less probable initial
distributions�.

In the two-player games the defective strategy prevails
always by the PD rule unless cooperators form clusters and
get benefits from the mutual and collective operations. For
the case of weak selfishness, randomly formed small coop-
erator clusters �exponential decay of P�k�� are sufficient for
the cooperator hubs to resist the invasion of defectors and to
reach the cooperator-defector balance �Fig. 3�d��. By increas-
ing b �i.e., increasing the intensity of selfishness�, clusters
randomly formed with small passive connections are not
strong enough to resist the defector invasions. The LFB rule
is favorable for cooperator hubs with a large degree of links
to grow and survive �Fig. 3�e��, and this produces the broad-
scale distribution of Fig. 3�b�. In particular, with SF network
structure cooperation can prevail for rather large b �Fig. 3�f�,
b=2.7� at which defectors dominate all the fixed networks
�Fig. 2�a��. This desired feature is due to the self-
organizations of cooperators by LFB: �i� Some cooperators

FIG. 2. Behaviors and evolutions of cooperations for different
network structures. �=0.1 for this and all the following figures. �a�
Average percentages of cooperators in the stationary states of vari-
ous network systems as the functions of the payoff parameter b
�averages over 103 random initial strategies with pC=0.5 and ran-
dom long-range links�. �b� pC’s evolve with t for various systems at
b=2.7. System size of 100�100 is taken for �a� and �b�.
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form hubs by connecting passively with large numbers of
other cooperators. In this way the hub cooperators can sur-
vive for large b against connected defectors by using the
benefits obtained from other connected cooperators. �ii�
Many cooperators with small connection degree can survive
for large b also by linking with one of these hubs and learn-
ing from these hubs. �iii� Moreover, some defectors of low
degree can also survive asymptotically by connecting with
cooperator nodes without conquering them.

In order to understand the correspondence between the
cooperation increase in Fig. 2�b� for t� tc and the formation
of SF networks, we show the dynamic coevolution of indi-
vidual strategies and network structure in Fig. 4. Initially

defectors and cooperators distribute randomly in the network
with equal probabilities pC= pD=0.5 and the LRLs are also
set randomly �Fig. 4�a��. At the early stage of evolution de-
fectors and cooperators form small hubs with random con-
nections and low degrees of single-scale links. In this stage
the number of defectors increases quickly due to the fact that
the two-player interactions are favorable strongly to the self-
ish individuals �Fig. 4�b��. In the second stage, defectors al-
most dominate the system �Fig. 4�c�� because large-scale col-
lective operations between cooperators have not yet been
established then. In this stage we observe that the degrees of
cooperator hubs increase, by attracting both cooperators and
defectors with the LFB law. On the other hand, some coop-
erator hubs may change to defector hubs when some of their
defector neighbors gain profits more than the hubs. More-
over, defective hubs are unstable because nodes linking with
them prefer to rewire their links due to the fact that they
cannot enjoy the best payoffs by connecting with these hubs.

FIG. 3. Cumulative stationary degree distributions of passive
links P�k� ��a�,�b�,�c�� and asymptotic stationary patterns of ALLN
systems for different parameter b’s��d�,�e�,�f��. Arbitrary initial
strategy distributions with pC=0.5 are used. �a�, �d� b=1.1; �b�, �e�
b=2.2; �c�, �f� b=2.7. In �d�, �e�, and �f�, open circles ��� represent
cooperators, solid circles ��� denote defectors, and solid gray lines
show LRLs. The sizes of the open and solid circles are proportional
to the logarithms of the numbers of links of the given nodes in each
figure, and different scales are used for different figures. The maxi-
mum hubs have links 17 in �a�, 273 in �b�, and 609 in �c�. System
size N=40�40 is used in Figs. 3 and 4.

FIG. 4. Self-organization of scale-free network in a dynamic
coevolution of individual strategies and network structure with PD
and LFB rules. b=2.7. �a�–�e� The same as Figs. 3�d�–3�f� with
pattern snapshots at different times plotted. �a� t=0. Initial random
strategy and LRL distributions. �b� t=2, pC=0.052. The number of
defectors �cooperators� increases �decreases�. �c� t= tm=4, pC

=0.0125. The percentage of defectors arrives at the maximum.
Small cooperator clusters remain. �d� t=7, pC=0.15. Some defec-
tors adopt cooperative strategy and cooperator clusters expand by
LFB. �e� t=30. Stationary pattern with scale-free scaling and pC

=0.66 is approached. The maximum cooperator hubs have links �a�
6, �b� 18, �c� 40, �d� 241, and �e� 442. �f� Cumulative degree dis-
tributions of passive long-range links at time t=0,2 ,4 ,7 ,30.
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Therefore, expansion of cooperator hubs, invasion of defec-
tive strategy into cooperator hubs, and collapses of defector
hubs are the characteristic features of the second stage. A
broad-scale degree distribution of connections emerges in
this stage �Fig. 4�f��. At tm, we observe pC�min��0.01.
However, this small cluster of cooperators turns out to be
stable. Cooperators get satisfactory payoffs from mutual co-
operations and keep their cooperation strategy by learning
from the connected cooperator hubs. In the third stage �t
� tm� the surviving cooperator hubs expand due to the fact
that more and more nodes link to cooperator hubs by learn-
ing from the neighbors with the best performance �Fig. 4�d��.
These reorganizations effectively enlarge the power-law scal-
ing region of the broad-scale degree distribution. In this
stage the number of cooperators increases rapidly because
many defectors change their strategies with the LFB rule.
Finally, the node connections are attracted to a stationary SF
network structure �Fig. 4�e�� with almost the entire power-

law degree distribution �Fig. 4�f� for t=30�. For systems with
larger sizes we find SF properties similar to Figs. 3�c� and
4�f� for t=30 except that the k length of the power-law scal-
ing is considerably enlarged.

In conclusion, we have studied the coevolution of strategy
and linking structure in social networks by the PD and LFB
interactions. Rich heterogeneities of social networks with
single-scale, broad-scale, and SF scalings may result from
coevolution in different PD conditions. In particular, our
simple model suggests that the SF feature, which has been
shown to be so pervasive in complex systems, can arise from
dynamic evolution via a self-organizing mechanism through
individual learning ability. And this SF structure enables net-
works to reach a high level of cooperation against defector
invasions with strong selfish intention of individuals. These
results shed light on understanding how complex networks
with global collective cooperation can emerge from social
individuals with local and primary abilities and instincts.
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